Technology
NSX-R
Line
Concept Technology History

Improved aerodynamics to significantly increase
vehicle stability and cornering performance at high speeds

In order to endow the new NSX-R with outstanding high-speed performance, we turned our attention to aerodynamics and their effect on high-speed cornering power, braking, turn-in, and other aspects affecting vehicle controllability. This led us to a new technical approach called "aerodynamically-induced stability". In addition to increasing high-speed cornering power, we have also striven to improve vehicle control quality - the ease with which the driver can control the car, and thus exploit its full potential. This enabled the chassis to be tuned for reduced understeer at low to medium speeds. The resultant improved handling at both low and high speeds endows the New NSX-R with outstanding speed on all types of circuits.

Fundamentals behind downforce and aerodynamic stability
for improved high-speed vehicle handling



In order to endow the new NSX-R with outstanding high-speed performance, we turned our attention to aerodynamics and their effect on high-speed cornering power, braking, turn-in, and other aspects affecting vehicle controllability. This led us to a new technical approach called "aerodynamically-induced stability". In addition to increasing high-speed cornering power, we have also striven to improve vehicle control quality - the ease with which the driver can control the car, and thus exploit its full potential. This enabled the chassis to be tuned for reduced understeer at low to medium speeds. The resultant improved handling at both low and high speeds endows the New NSX-R with outstanding speed on all types of circuits.
The third advantage of downforce is that it helps reduce body roll as well as body pitch. This in turn helps reduce sudden variations in vertical forces applied to the tires at the limit, increasing vehicle stability in the wake of driver input. Vehicle behavior is also more linear near the limit of adhesion, contributing to increased driver control. In other words, creating downforce to press the vehicle onto the road as speed increases not only contributes to increased absolute cornering speed and thus absolute dynamic performance, but also significantly improves vehicle control quality as measured by response to driver inputs and vehicle stability at the limit. These are the fundamentals behind downforce and aerodynamic stability as a means to improved high-speed vehicle handling.
Relationship between vertical force and cornering force


As the vertical force applied to the tire increases, cornering force also increases. In other words, increasing the vertical force applied to the tire has the same effect as using larger tires.
How downforce helps control changes in attitude
How downforce helps control changes in attitude

Downforce helps reduce body roll while cornering and body pitch during braking or acceleration. This also helps reduce sudden variations in vertical forces applied to the tires at the limit, for increased vehicle stability. Downforce not only increases dynamic performance, but also creates a more stable vehicle behavior environment for steering, throttle, and braking inputs.

Extensive circuit testing to determine the optimum
equilibrium between downforce and front-to-rear balance



In order to endow the new NSX-R with outstanding high-speed performance, we turned our attention to aerodynamics and their effect on high-speed cornering power, braking, turn-in, and other aspects affecting vehicle controllability. This led us to a new technical approach called "aerodynamically-induced stability". In addition to increasing high-speed cornering power, we have also striven to improve vehicle control quality - the ease with which the driver can control the car, and thus exploit its full potential. This enabled the chassis to be tuned for reduced understeer at low to medium speeds. The resultant improved handling at both low and high speeds endows the New NSX-R with outstanding speed on all types of circuits.
The third advantage of downforce is that it helps reduce body roll as well as body pitch. This in turn helps reduce sudden variations in vertical forces applied to the tires at the limit, increasing vehicle stability in the wake of driver input. Vehicle behavior is also more linear near the limit of adhesion, contributing to increased driver control. In other words, creating downforce to press the vehicle onto the road as speed increases not only contributes to increased absolute cornering speed and thus absolute dynamic performance, but also significantly improves vehicle control quality as measured by response to driver inputs and vehicle stability at the limit. These are the fundamentals behind downforce and aerodynamic stability as a means to improved high-speed vehicle handling.
Downforce balance front to rear (Straight-line driving at constant speed)


By creating a downforce with the same front-to-rear balance as vehicle weight, changes in steering characteristics from low to high speeds remain well under control. At higher speeds this translates into a more linear response. More precise control of the vehicle helps the driver delve further into the car's potential.
NSX-R
Testing at Honda's proving grounds in Takasu, Hokkaido
Return Return Next

Page Top

Honda Worldwide site

Home | Site Map | Site Index | About this Site

Copyright, Honda Motor Co., Ltd. and its subsidiaries and affiliates. All Rights Reserved.